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ABSTRACT

This report describes the main features of a digital

computer program for calculating the pressure distribution along

bodies in two-dimensional cavity flow in an infinite, incompres-

sible, inviscid fluid. The pressure distribution is used to

compute drag, lift, and moment coefficients. The program is

based on a theory of cavitated flows developed in recent years

by Wu. In the present report, the theory is applied to flow con-

figurations characterized by two fixed detachment points and to

sections whose shape in the wetted region is arbitrary, apart from

the restriction that there be no sharp corners interior to the

wetted region. Calculations are presented for parabolic sections

of 10-to-I fineness ratio and 1-to-I fineness ratio at several

angles-of-ittack.
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NOMENCLATURE

A = upper detachment point in actual flow; also, a

real amplitude associated with the complex velocity
potential

A' = upper detachment point in basic flow

B lower detachment point

B' lower detachment point in basic flow

C = point of intersection of R-axis with base of body

C' = point of intersection of 'x-axis with base of wedge

in basic flow

C = pressure coefficient (normalized pressure) =P-Pc

cd = drag coefficient = d pU•

SpU L

cl - lift coefficient I

cm = moment coefficient =

!pU L

Fd component, in the direction of the incident stream,

of the hydrodynamic force per unit span

F1 = component of same force normal to the incident stream

f(t,to) - form of complex velocity potential in the t-plane

g(t,to) = 1 f(t,to)

h(w) = functional relaionship between y-coordinate of point on
wetted perimeter and auxiliary variable, w

= arc-length integral in w, extending from wj to Wj+1

I(n)(t,) - integrand of t'integral in Equation (3.5)

i W subscript denoting ith msh point; i 1,2,
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J(n)(t')= f-integral in Equation (3.5)

J = subscript denoting j th mesh or Simpson point;

j = 1,2p ....

L= reference lengLh (= ^ of Figure 2.1) in units of

which all normalized lengths are expressed

'2 = length of side of wedge in basic floc

M = hydrodynamic moment about point 0

N~t) 1(t) = X s(t)

NF = number of fine-mesh intervals in w or t

N += number of rough-mesh intervals in w or t on upper

profile

NR (n- = number of rough-mesh intervals in t on lower profile
in the n th iteration

NT(n) = total number of mesh points in t in nth iteration

n = superscript denoting nth iteration; nO,1,

0 = nose of body, and origin of 1-1 coordinate system

P RF = mesh point on upper profile separating rough from

fine mesh

PF= provisional point on lower profile separating fine

from rough mesh

PFR M final mesh point on lower profile separating fine

from rough mesh

p M pressure anywhere on wetted perimeter

PC - cavity pressure

PS W stagnation pressure

p - pressure at infinity

r - real number such that 0 _ r < 1

t total length of wetted perimeter

S

itB
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arc length measured from upper detachment point A

to any point on wetted perimeter

s=
L

s(t) = s as a function of t

s(n) (t) = approximation to s(t) obtained after nth iteration

sj(n-1) s(n-1)

s[w] = s as a function of w

S RF s[w RF]

SFR = s[wFR]

t = variable - in general complex - into whose plane

the physical plane is mapped so that the complex

velocity potential takes the form shown in Equation

(2.1). However, in all functions and integrals in

this paper, t takes on only real values and is con-

fined to the interval -1 _ t _ 1.

to = image in the t-plane of the point at infinity in
the physical plane

to(n) approximation to to obtained after nth iteration,

n - 0,1,

ti(n) a ith mesh point in t in nth iteration, i - 1,2, ... ;

n - 0,1, ... d

tRF(n) W value of t satisfying equation, s (t) - SRF

tFR(n)* - value of t satisfying equation, a (t) M -FR

tFR (n) - the particular ti (n) lying closest to tFR(n)*

(at) (o) - mesh width in t in basic flow

(At)R (n) . width of rough mesh corresponding to the nth iteration

(At)F(n) . width of fine mesh corresponding to the nth iteration
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U speed of incident stream
1.

V =

w = + F--= auxiliary vrriable used in representing the

wetted profile

wj = the ith mesh point in w, i = 1,2,

w 
-F

wRF=-

WFR = FR

WFR = the particular wj lying closest tow

N F R
win = wI

wm• w•+NF+N•+I

(Aw)R = width of rough mesh in w

(Aw)F = width of fine mesh in w

= abscissa of arbitrary point on wetted perimeter
A

x
iA

xRF x-coordinate of PR R

L

* - x-coordinate of 9FR

xFR LF -_

2 2XFR FR

9 - ordinate of arbitrary point on wetted perimeter

a - angle between incident flow direction and positive

I-ax is

angle, measured positive counterclockwise, between

tangent vector to wetted perimeter and positive

i-a&Ais. Tangent vector poiatt in direction of in-

creasing s.

f•(s) - • expressed as a function of s
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§ =relative error

= fraction of r by which the half-angle of the basic-

flow wedge is measured

p = density of the fluid

C = cavitation number = - ---Ps'P.,

S= real integration variable; -1 _ T _ 1

Jr. an% Simpson point associated with the ¶-integral

of Equation (3 5) -. ,Ih e ath iteration.
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1. INTROIXJCTION AND SUMMARY

As part of an investigation into ventilated flow past

surface-piercing struts, TUG has been developing a digital com-

puter program for calculating the pressure distribution along

bodies in two dimensional cavity flow in an infinite, incompres-

sible, inviscid fluid. From this pressure distribution we compute

-he drag coefficient and - in the case of non-zero angle of attack-

the lateral or lifting force coefficient and the hydrodynamic

momient ccefficient. The program is based on a theory of such

flov.- developed in recent years by Wu' As of this writing,

we nave applied the theory to flow configurations characterized

by two fixed detachment poincs and to sections whose shape in the

wetted region is arbitrary, apart from the restriction that there

be no sharp corners interior to the wetted region. To the best of

our knowledge, Wu's theory has not previously been applied to such

problems. Future work may include situations in which one or both

detachment points are smooth and/or shap corners interior to the

wetted region are permitted.

In this report we describe the main features of our pro-

gram, and we exhibit and discuss the computed results obtained

thus far in a number of cases. It will be seen that in two of

these cases our computational scheme worked well, in one case it

gave results whose interpretation we have not yet decided upon, and

in one case it was unable to yield meaningful answers. The prin-

ciple cause of difficulty was probably the insufficient accuracy

attained in the evaluation of certain integrals; any further work

on the two dimensional problem should therefore include an effort
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to improve this accuracy. There is no obstacle other than pos-

sibly increased running time, to achieving this higher accuracy.

Before going into details, we summarize the results.

Allusions to convergence refer to an iteration procedure which is

one of the principal features of the computational scheme, and which

is described in Section 3.

Case 1. A 10-to-I fineness ratio parabola at zero angle-

of-attack and zero cavitation number. (See Figure 1.1.) The se-

quence of computed pressure distributions does not converge. This

may be seen from the fact that the first three pressure distribu-

tions in the sequence are almost symmetric with respect to the nose

of the parabola (the true distribution is symmetric) while the

fourth distribution is close to antisymmetric. (See Figure 4.1.)

The corresponding values of drag coefficient fluctuate from one

iteration to the next in what seems to be a random manner, with a

maximum deviation of about 207% above and below the mean for the

four iterations.

Case 2. A l-to-i parabola at zero angle-of-attack and

zero cavitation number. (See Figure 1.2.) Evidence that the se-

quence of computed pressure distributions converges is provided

by the distributions arising from the sixth and seventh iterations,

which differ by no more than about 3.5 percent anywhere on the

wetted surface, while the corresponding drag coefficients agree to

better than a small fraction of a percent. Confirmation of the

correctness o'f theqfinal (seventh) distribution is provided by a

comparison with a simple approximate algebraic expression for the

(31pressure along a parabola, derived by Johnson]. The agreement
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between our result and compucations based on Johnson's formula is

quite close.

Case 3. A 1-to-I parabola at 1V angle-of-attack and zero

cavitation number. (See Figure 1.3.) Convergence is suggested by

the fact that the difference between successive pressure distribu-

tions diminishes with iteration number over the entire wetted sur-

face. However, the rate of convergence is slow, and even the thir-

teenth and fourteenth distributions differ by as mucn as 15 percent

at a point near the nose where the pressure is 40 percent of its

stagnation value. Further away from the nose, where the pressure

is lower, the difference in the distributions rises to 25 percent.

The drag coefficient remains constant over all fourteen iterations,

apart from a random fluctuation whose rms value is less than 1 per-

cent. The fluctuation is probably caused by numerical inaccuracies.

These inaccuracies have a more serious effect when computing the

lateral force and moment coefficients, in which they produce consider-

ably larger fluctuations. The reason for this will be discussed in

Section 4.

Case 4. A 1-to-i parabola at a 50 angle-of-attack and

zero cavitation number. (See Figure 1.44) In this case, after

fourteen iterations there is no indication of convergence to a limit-

ing pressure distribution. On the other hand, all of the distribu-

tions are similar in form. Moreover, apart from the third distri-

bution, which has a large negative dip, the pressure distributions

fall within a range of values such that any one of them appears

physically reasonable. This suggests that the failure to converge

is a numerical phenomenon, an idea that is reinforced by the fact
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that, as in the 1° case, the drag coefficient varies in what ap-

pears to be a random manner as a function of iteration number. Al-

though the fluctuation of the drag coefficient about its mean value

is larger than in the 1V case, it is still small, having an rms

value of 4 to 5 percent. Also as in the 1V case, the fluctuations

of the lift and moment coefficients are considerably larger than those

of the drag coefficient, for reasons to be discussed in Section 4.

It should be remarked that the ccA-putation time in all

four cases averaged to somewhat less than 0.01 hours per iteration

on the IBM 7094 computer.

To render intelligible the computational procedure for

calculating the pressure distribution on the body, and the corre-

sponding drag, lift, and moment coefficients, it is necessary to

give a brief account of the underlying theory. Accordingly, the

next section contains such an account. In Section 3, we describe

the computational scheme itself. Although we do not exhibit the

actual computer program, we do explain all procedures colled for

in the program specification, other than standard subroutines. In

Section 4, we present some of the numerical results obtained for

the aforementioned cases. Finally, Section 5 lists some recommen-

dations for future improvements in the computational procedure.

)
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2. OUTLINE OF THEORY

The configuration under discussion is shown in Figure

2.1.

In the figure, AOBA represents the perimeter of the

body upon which is incident a uniform flow of complex velocity

Ue;ia The shaded region represents the cavity, the points A and

B being the fixed detachment points from which emanate the two

free (constant pressure) streamlines that bound the cavity. 0,

the origin of the q-9 coordinate system, is generally placed

most conveniently at the point of maximum curvature of the peri-

meter; for the usual bodies this point is well defined. It is

convenient, also, to have the 9-axis tangent to the perimeter at

0. P(9) is any running point on the perimeter, where 9 is the

arc length from A to P. 0 is the angle, measured positive counter-

clockwise, between the positive §-direction and the tangent vec-

tor at P. This vector points in k.he direction of increasing *.

The significance of the points PF, P , and PFR with abscissae

RF IIR' and 9FR will be explained presently.

As mentioned, our computation procedure is based on a

theory due to Wu(1],[2] wherein the region of potential flow

exterior to the body and cavity in the physical ('M=+i9) plane

is mapped conformally into the interior of a slitted semicircle

in the plane of a new complex variable denoted by t. (Here, t

has no connection with the time.) This mapping has the property

*In Wu's mapping, the origin of the rectangular coordinate system

in the physical plane is at A, but this has no effect on the
equations needed in the present work.

41



5A.

A

y

AA

II

U

Figure 2. 1

GENERAL CONFIGURATION UNDER DISCUSSION



6.

that the velocity potential in the complex t plane, call it

f(t'to), takes the form of an elementary algebraic function of

t, viz.,

f(t,to) - At (t-to)(t-'o (t-to t-o(2.1)

where to is the image, in the t-plane, of the point O=o-, A is

a real constant (not to be confused with point A of Figure 2.1)

to be determined, and the bar (in this case) denotes the complex

conjugate.

Naturally, the complex function that accomplishes the

mapping is not known in advance, and its determination consti-

tutes the main problem. However, if as in our case, one is not

attempting to obtain the entire flow but only the pressure dis-

tribution on the body, one can get by with the computation of a

good deal less than the entire mapping function.

The base of the semi-circle in the t-plane is the in-

terval -1 < t < 1 on the real t-axis, and this interval is also

the image in the t-plane of the wetted perimeter AOB of the body.

Thus as t goes from -1 to 1, P goes from A to B via 0, while 9
varies from 0 to t, where t is the length of the wetted perimeter.

As will become evident, the determination of the unknown function

f(t) is an essential step in obtaining the pressure distribution

on the body.

Before writing expressions for these quantities, we

introduce certain normalizations into the problem. Specifically,

we normalize all lengths with respect to some convenient length,
AA
L, defined in the plane of the flow. L in our case is taken to
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be OC, the length of x-axis intercepted by the body. Then, if s

represents normalized arc length, s =•. Likewise, all other

normalized lengths are denoted by removing the hat symbol from

the corresponding letter. Further, we normalize all velocity

magnitudeswith respect to the constant speed of the fluid along

the free streamlines that bound the cavity. Finally, we introduce

three dimensionless coefficients, viz., a two-dimensional drag

coefficient, Cd, a two-dimensional lateral force or lift coef-

ficient, c,, and a two-dimensional moment coefficient, cm. These

are defined as follows:

cd Fd 20 (2.2a)

c I F M. (2.2b)

YPU L

cm- M (2.3)

where Fd is the component, in the direction of the incident

stream, of the hydrodynamic force per unit span acting on the

body, F, is the component of the same force normal to the stream,

and M is the moment (measured positive counterclockwise) of that

force about the nose, 0. U is the unnormalized speed of the in-

cident stream and p is t"-. fluid density.

Instead of the pressure itself, it is convenient to

coqmute the dimensionless pressure coefficient, Cp, defined by

• . . . , • • • .
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C -p- (2.4)

where p is the fluid pressure anywhere along the perimeter of the

body, PC is the pressure in the cavity, and ps is the stagnation

pressure. It can be shown that the drag, lift, and moment co-

efficients are then expressible in terms of Cp by means of the

relationships

Cd C= Crosa + Cy sina (2.5a)

c, =-cx sina + cy cosa (2.5b)

cm = (+0) [ Cp(S)[X(S)cos(s(s)+Y(s)sinl(s)] ds (2.5c)

where S

cx - (l+o)1 Cp(s) sina(s)ds (2.6a)

Cy (l+Co) f Cp(s) cosa(s) de (2.6b)

In these equations, a is the angle, measured positive

counterclockwise, between the incident flow velocity and the posi-

tive x-axis, S is the normilized length of the wetted perimeter

and a is the cavitation number, defined by

S PC - p--(2.7)

where p. is the luid pressure at infinity. "(s) denotes the

functional dependence of the angle 0 on the arc length s, while

x(s) and y(s) denote the corresponding dependences of the x and
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y coordinates of a point un the perimeter. These functional de-

pendences are known, being determined solely by the geometry of

the body.

Next we change the integration variable from s -o t.

It is shown in WuLm1,r2] thac C pt], defined as Cp (s(t)), can be

written

2rf (t' t°stt
CP[t] = i -[f t -1 t l (2.8)

In Eq. (2.8), f(t,to) is the image in the t-plane of

the normalized velozitv potential (see Equation (2.1)), s(t) is

the still-to-be-determined normalized arc length as a function of

t, a•.d the subscript t denotes differentiation with respect to t.

Changing from s to t in Eq. (2.5c), (2.6), and (2.7)

and using Eq. (2.8), we see that these equations can be written

in the form

c= - (l+0 "st sin)(3(t))St(t)dt (2.9a)

= (a t(t)dt (2.9b)

cm W-0l~) tc b I.L~ 4}(s (t) ) c os"(s 0,)

y ( _-(2.10)

+ Y(s(t))sina(s(t))] st(t)dt
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Fquations (2.8), (2.9e and b), and (2.10) combined with

Eq. (2.5a and b) show that once the function s(t) has been deter-

mined, the desired pressure distribution coefficient, Cp (s), and

the drag,lift, and moment coefficients Cd, cis and cm can be in-

ferred by direct calculation.

We now invoke one of the main results in Wu's work[2]

viz., that the unknown function s(t) is the solution to a non-

linear Lategral equation, viz.,

s(t) = exp l. -1)t' -I) so)-t (2.d1)

where f(t,to) is given by Eq. (2.1), with the real constant, A,

and the complex constant, to, still to be determined. It will

be recalled that to is the image in the t-plane of the point

z=0. Imposition of the condition that the complex velocity

4Ue ia as z-ý leads to the following equation for to:

to e'= exp 0 - (2.12)

Finally, if S is the (given) normalized length of the

wetted perimeter, we have

s(l) = S (2.13)

The function s(t) and the constants A and t are to

be obtained by solving Equations (2.11), (2.12), and (2.13)

si-ultaneously. It is this solution process which we carry out

numerically and for which we have developed the computational

procedure described in the next section.
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3. COMPUTATIONAL PROCEDURE

To calculate the solution to Equations(2.1l)-(2.13), we

use the method of successive iterations. For this purpose, it

is convenient to write Equations (2.11) and (2.13) in a slightly

altered form. We put

f(t,to) = Ag(t,tJ) (3.1)

and

s(t) AN(t) (3.2)

where g(t,t 0 ) is the algebraic function multiplying the constant

A in Eq. (2.1).

Equation (2.11) then becomes

N(t) = 1 -t ) U•t-) , (t',to) -r- (3.3)

while for Eq. (2.13), we get

A S (3.4)

There are many ways in which to start off the iteration

process. We have followed Wu in introducing the idea of the

"basic flow." This is a known two-dimensional cavitated flow

about some body which ideally - but not necessarily - has a close

resemblance to the given body. From this known basic flow, one

can obtain the starting quantities or zeroth iterates, s(o)(t)

and to (O)*, s(o)(t) and t0 (o) are substituted into the right side

of Eq. (3.3) to yield N(1)(t), from which A(') is then calculated

*Since we start off with s(') (t) rather than N(O)(t), we do not

need the zeroth iterate, A(o).



12.

via Eq. (3.4). Likewise to(') is obtained by substitution of
s (t) and to(0) into the right side of Eq. (2.12). Finally,
s(1) (t) = A(1) N (1 (t), in accordance with Eq. (3.2).

The formalities of going from the (n-l)st to the nth

iterate are defined by the following equations:

t 1 (n-1) (n-)
N(n) (t)=eI 7r (T-t').(Tt'-l ýgt' 0t , t -

-l (3.5)

A ,(n)_ S (3.6)
N (1)

s(n) (t) A(n)N(n) () (3.7)

t (n) - di J( n (3.8)exp ('on-l)(j d. (3-8)0ITar f (- t 0 I4 0T o ---

To these, we may add equations for the pressure coef-

ficient and the drag, lift, and moment coefficients, quantities

which although not iterated in themselves, are to be calculated

at the end of each iteration. We have from Eq. (2.8)

(to (nq
(n)[t .- 1 - ft(tt 0  (3.9)F (t ni

while from Eq. (2.5a and b), (2.9a and b), and (2.10) we get

cd(n) c x (n) Cosa + (sin (3.10a)

c I(n) -x c(n) sina + c (nCosa (3.10~b) ;;;
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Cx(n) -- (1+a) 1- ft( tc0(n) sinF(s n) (t)) ,(n) (t)dt (3.11)L std (3) st) t

cm(n) = (l+)f 1 ft(tnt) Jj ( (s(n) (t)) (s(n)(t)(

y (n (t)t

+y+s(n) (t)) s0 n (s(n) (t)) 5 -jn) (t)d3

As of this writing, we have not investigated the theore-

tical convergence of the foregoing sequences. However, such con-

vergence seems likely when the choice of basic flow is not too

unreasonable, and indeed there is numerical evidence of conver-

gence in certain of the specific cases to be described. At any

rate, we shall assume that if the zeroth order iterates are suit-

ably chosen, the sequences defined by Equations (3.5)-(3.12) do,

in fact, converge. Note that even when this assumption is cor-

rect, it does not follow that the num rical realizations of these

sequences converge, since purely numerical phenomena such as ac-

cumilation of errors may intervene to spoil the convergence.

The actual computation divides itself logically into

four stages:

a) numerical specification of the body geometry,

b) basic flow calculation,

c) numerical realization of the iteration procedure, and

d) calculation of the pressure coefficient and the drag,
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lift, and moment coefficients from Eq. (3.7) and Eq. %3.9)-(3.13).

We describe each of these in turn.

A. Specification of the Body Geometry

The body geometry enters into the foregoing equations

through the functions F(s), x(s), and y(s). We first relate these

functions analytically to the usual x-y equatiors of the body pro-

file. We then define a set of data point6 along the perimeter at

which ]f(s), x(s), and y(s) are to be evaluated.

Let the body shape in the wetted region be specified

originally by two single valued functions, viz.,

9 =9+ () upper profile (9 > 0) (3.14a)

9 " r(Ax) lower profile 0 Y 0) (3.14b)

which, upon the introduction oft as the unit of length*, become

y=y (x) y > 0 (3.15a)

y = y (x) y < 0 (3.15b)

These functions are to be continuously differentiable

except at the nose, where the profile has a vertical tangent.

Under the assumption that the nose is parabolic, It is convenient

to introduce a new variable, w, related to x by the equations

w - - VxT upper profile (y > o) (3.16a)

w = lower profile (y < 0) (3.16b)

We then have instead of Equations (3.15), the single

equation

y - h(w) Wein • V • w*mx (3.17)

*We recall that - - R, the length of 2-axis intercepted by the
body; see Figure 2.1.
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where

h(w) =- y(w 2 ), w 0 (3.18)

The quantities w and w are defined by

W = - (3.19)

w=xff; (3.20)

where xA and xB are the x-coordinates of the detachment points

A and B shown in Figure 2.1. In these equations, the positive

square root is intended.

Because the nose is parabolic, the function h(w) is

continuously differentiable throughout the interval Wmin < W <

w,. Thus the function g(w), defined by
dh

g(w) = dh (3.21)

is continuous in that same interval.

The arc length s can be expressed as a function of w

as follows:

W

s(w! = + d (3.22)

min

Substituting from Equations (3.16) and (3.21) into Equation (3.22),

we get

s[w] l(2w') 2 + [g(w')l dw' (3.23)

Wmin
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Finally, from the definition of the angle P of Figure
dx

2.1, it follows that 1 is related to the derivative d-• by the

equations

dx
=2ir -arc cos T, g(w) :<O, w <O (3.24)

arc cos dx, g(w) > 0, w < 0 (3.25)

dx
2r + arc cos T, g(w) > 0, w > 0 (3.26)

Here the arc cosine means the single valued inverse

cosine function whose range extends from 0 to r. It is necessary

always to express 0 in terms of this particular branch of the in-

verse cosine since it is only this branch that the computer sub-

routine calculates.

From Equations (3.16) and (3.23) we substitute for dx

and ds in Equations (3.24)-(3.26) to obtain

2ir - arc cos 2w g(w) _0 0, w 0 (3.27)
V(2w) =+(g (W) 2

arc cos , g(w) > 0, w < 0 (3.28)

2 + C)[g(w) 2

=2r + arc cos 2w ,g(w) > O, w > 0 (3.29)

V(2w) 2+ g(w) ]2

By means of Equations (3.16), (3.17), (3.21), (3.23),

and (3.27)-(3.29) we have expressed each of the variables x, y,

s, and 0 as a function of w alone. Thereby x, y, and 0 are de-

termined as functions of s, a fact which we use later in the pro-

gram when carrying out the iteration procedure.
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We now define, along the wetted perimeter of the body,

a set of data points at which x, y, 0, and s are to be evaluated.

Because on the actual profiles of interest, 0 changes very rapidly

as a function of s or w in the vicinity of the nose and very slowly

elsewhere, we distribute the data points with two different densi-

ties. In the vicinity of the nose a high density or fine mesh is

used; elsewhere we use a low density or rough mesh. Let PRF and

SFR be those points on the upper and lower profiles that separate

the part of the perimeter over which 0 changes rapidly from the

rest. The points are indicated in Figure 2.1, where their ab-
scissas are denoted by • and FR For a given profile these

points - and therefore the values of 'R and R are chosen
RFpoin by

eye. In the discussion which follows it will become evident that

in general only one of the two points can be a data point (mesh

point), and we arbitrarily take this one to be PRF, the point on

the upper profile. We denote by PFR the mesh point lying closest
*

to PFR on the side toward the point B. The quantitative specifi-

cation of PFR will be given presently.

Corresponding to the normalized x-values we define the

w-values

-- (3.30)

w * (3.31.

Similarly, we can write

"WFR (3.32)

but this equation, unlike the previous two, does not provide a

definition of the quantity on its left-hand side because x. is
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as yet unknown, In fact, as we shall see, WFR is obtained first,

whence xFR can be calculated from Equation (3.32), if desired.

Let wi be the w-value of the i th mesh point, counting

wmin as wi. Then from the definitions of the mesh points PRF

and PFRI we have the scheme:

Wmin •• w < WRF rough mesh (3.33)

WRF •wj•w fine mesh (3.34)

WFR • wi wix rough mesh (3.35)

Now choose a value for NR, the number of rough-mesh

intervals on the upper profile. Since wmin and wRF are already
+

defined by Equations (3.19) and (3.30), the choice of NR fixes

the value of (Aw)R, the length of the rough-mesh interval in w.

Specifically,

w e'-wamn
(Aw) R = (3.36)

NR

With (Aw)Rthus determined, we see that N-, the number

of rough-mesh intervals on the lower profile, cannot be arbitrary

but follows from (3.35) and the definition of P.. We have in

fact

wim-x "FR( -Aw, - 0R r < 1 (3.37)

which says that N_ is the integer part of the left aide of Equa-

tion (3.37). This determination of NR then leads at once to the

desired expression for w FR, viz.,

w- N_(aw)R (3.38)



19.

Finally, we choose a value for NF, the "umber of fine-

mesh intervals*. From Equations (3.V0) and (3.38) we can then

calculate (Aw),, the length of the fr.~e-mesh interval. We have

(Aw) FP-- RF (3.39)F F

The foregoing equations now enable us to write the fol-

lowing expressions for the calculation of wi, the w-value of the

ith mesh point. We recall that w, = Wm = "A

W - V9A+ (i'l)(Aw)R i = 1,2,...N+ (3.40)

++ -)(Aw) (3.41)wi = RF +i-N'R - AwF

: - ÷ N(ý'q)R + ('-R+- 1) (&w)F

i=N ++1......... N + NFR= ++IF

V" w F + (i - N -NF- N )(Aw) 1  (3.42

S..; + N•(AW•)R + NF(Aw)F

+ (i - N

NR F -

i i+ + N + I ......... N++N +NlR

Next we evaluate the functions x(w), h(w), s[w], and

(O(w) at the points wi defined by- Equations (3.40)-(3.42). From

Equations (3.16), x(wj) - w2, while h(wi) is evaluated via Ecua-

tions (3.17) and (3.18), sLwi] via Equation (3.23), and 1(wi)

via Equations (3.27)-(3.29). We should note that for the

*When the body is symmetric in Y - a comnon oacur&'ence - it is con-
venient to have the nose point, 0, be one of the mesh points,
wi. Accordingly, we always make NF an even number.
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profiles in which we are presently interested, the functions

y± (x) - and therefore h(w) - are simple combinations of elemen-

tary functions so that the evaluation of h(wi) presents no problem.

The function g(w) appearing in Equations (3.23) and (3.27)-(3.29)
dh

and defined as d, is evalupted by first differentiating h(w)

analytically and then computing the resulting expression at the

desired value of w.

To evaluate the integral on the right of Equation (3.23),

we first observe that
i-l

s[wl] = Ij i = 2,3$ .... (3.43)

J=l

where I stands for the integral from Wj to wj+I. For computa-

tional purposes, it is advantageous to express Equation (3.43)

in recursive form, viz.,

S[Wi+ 1 ] = stwi) + Ii i = 1,2, .... (3.44)

with s[w1] = 0.

For any given i, the integral I! in Equation (3.44) is

calculated repeatedly by means of Simpson's rule, the number of

Simpson subintervals doubling at each repetition. The process

stops when successive computed values of Ii differ by less than

some preassigned fractional amount, in cur case 0.1%.

This completes the description of Part A of our pro-

gram, viz., the specification of the body geometry (profile cal-

ctulation). We conclude with a recapitulation of the input and

output variables for Part A.
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Inuts for Part A

XA N+, NF, Equations y X 9 y (X
•' •A •B' RF' I FR' IR' F1 +•)

Outputs from Part A

wit i = 1,2, ... N + F + N + 1, x(wi), h(wi),

s [wi],t 7ý(wi)

In addition to being stored for use in the rest of the

program, these five variables are printed out to expedite program

analysis and checking.

B. Basic Flow Calculation

As already mentioned, we use some known flow, the so-

called "basic flow," to furnish the zeroth order quantites, s(o)(t)

and t0(o), with which the iteration process is started. The choice

of the basic flow is made on the dual grounds of ease of calcula-

tion and a presumed resemblanne to the flow around the body of

interest. In this subsection we exhibit, by way of illustration,

one such basic flow, and we show how it leads to the numerical

specification of the zeroth order iterates.

In the case in question ; and, for that matter, in all

the cases thus far computed - the original body is a parabola lo-

cated symmetrically i.ith respect to the x-axis. The base AB of

the body - see Figure (2.1) - is normal to the ^-axis so that

XB = XA, while from symmetry we have YB =_ YA" We assume an

incident flow parallel to the I-axis, i.e., a;--O.

For a basic flow we choose the flow about a wedge with

sides of length 2 located symmetrically with respect to the 4-axis
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and having its vertex at 0 (see Figure 3.1). This flow has the

merit that its s(t) function is known explicitly [2). As with the

pa•-abola, the base A'B' of the v'edge is normal to the '-axis,

while the incident flow is para'lel to that axis. The fixed de-

tachment points of the basic flow are at A' and B' corresponding

to the values t=-l and t=l, respectively, in the t-plane. The

half-angle of the wedge at 0 is denoted by er with 0 < e < I

To coordinate the wedge dimensions and the basic flow

parameters with the parabola and its flow, we proceed as follows:

we set the length of the base A'B' of the wedge equal to that of

the parabola, AB. This gives the cavities in the two flows the

same initial widths. Next we require that the wetted perimeters

of the two bodies have the same lengths, i.e.,

(3.45)

These two conditions fix the angle er since we have

Er = arc sin AC (3.46)

Further, the cavitation number a is assumed to be the

same in both flows. Then, since the velocity magnitudes are

normalized to the free streamline speeds in both flows, the nor-

malized incident flow speeds must be equal and in fact are given

by

U i1 (3.47)

Finally, all lengths in both flows are normalized with

respect Z (= of Figure 2.1).
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Figure 3.1

BASIC-FLOW CONFIGURATION
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The quantities s(o)(t) and too(), arising from the

wedge flow and serving as zeroth order iterates in the parabola

flow, can now be written down from Wu's solution to the wedge

problem [2]. Specifically,

s(o) (t) = i - sW(-t) -1 • t < 0 (3.48)

s(0) (t) " St) 0+• t 0 (3.49)

where the function Sw(t) is defined by

t2(l-e)(t2+V2)I (t2+V-2) +26 th' 2 e(t 2  W 2 +V2  dt'
Sw (t)--•

V2 (l+V2 2 +2 r,• t ,'1-2 e (t 12+V2 l (t 2 2+V.2) 1 dt, 3. 0

(3.50)

In Equation (3.50), the constant V is
1

V = (1+o) W6 (3.51)

It will be recalled that e, the coefficient of r in

Equation (3.46), is restricted to the interval 0 < c < 1

Note also that Sw (t) is defined only for t Z 0.

From Wu's solution, the constant to(o) is given by

to(°) =- iv (3.52)

Next we represent s(o)(t) numerically. For this pur-

pose we establish, over the interval -1 _ t e 1, a set of equally

spaced mesh points at which s(o) (t) is to be evaluated. The

number of such points is chosen equal to the number of mesh
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points in w, i.e., NR + NF + NR + 1. Since the t-points are

equally spaced*, it follows that the mesh width is given by

(At)o = + 2 (3.53)

NR + NF +NR

where the superscript o stands for zeroth iteration.

Denoting the ith mesh point in the zeroth iteration

by ti(°) with t1(o) =- l, we have

ti(°) = - 1 + (i-1)(At)° i=1,2, ... NR +NF+R (3.54)

or, in view of Equation (3.53),

ti(o) =- 1 + 2(i-1) i=1,2, N.. N++N++l (3.55)
NR+N F+NR

We now compute s(o)(ti(°)) and to(0) via Equations

(3.48)-(3.50), (3.52), and (3.55). It should be remarked that

the evaluation of the integrals in Equation (3.50) is carried

out according to the scheme already described in connection with

the integral of Equation (3.23).

inputs for Part B

L, A , NR, NF, NR, o

Outputs from Part B

ti(0) s(°)(ti(o)) (-192 Na+)N+NR+1r o().

This single-densir t mesh is used only in representing the zeroth
order iterate, st°)(t). When computing s(n)(t), n > I, we dis-
tribute the mesh points over the interval -1 • t • T with two
densities, in much the same manner and for the same reason as
was done with the w-points of the profile calculation. This is
discussed more fully in the next subsection.
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C. Numerical Realization of the Iteration Process

We have already mentioned that the mesh points at which

the nth iterate s(n) (t), n ; 1, is to be evaluated are distributed

on the interval -1 _ t < 1 with two densities (rough and fine mesh)

in analogy with the mesh points in w. Unlike the w-points, how-

ever, the mesh points in t change from one iteration to the next;

so also does the number of mesh points. Accordingly, we denote

the t-value of the ith mesh point in the nth iteration by ti

i=l,2, ... NT(n)(tl1 (n)=_l), where NT(n) is the number of mesh points

used in the nth iteration.

As the first step in explaining how the numbers, ti (n)

are arrived at, we describe the procedure for calculating tRF

and t(n)I n l 1; these are defined as the mesh points in t at

which, with increasing t, the mesh changes from rough to fine and

fine to rough, respectively. That is, they are the analogies of

WRF and wFR except for the dependence on iteration number. The

calculation of tRF (n) and tFR (n) is recursive since it presumes

that the mesh points ti(n-l) have already been established.

Let sRF and s FR be the arc lengths at which the w-mesh

density changes. We may write

SRF= s WRF (3.56)

S = sfwF.R3 (3.57)

where it will be recalled that the values of the function on the

right of these equations form part of the output of Part A. It

is important to note that since s(wi) depends only on the geometry

of the body, the quantities sRF and SFR are independent of the
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iteration number. Next consider the (n-l)st iterate s(n'l)(t).

We choose as t(n) the value of t that satisfies the equationRF
S(n-l)(t) = sRF (3.58)

Since the representation of s(n-l)(t) is numerical -

it is defined by the sequence of calculated values s(n-l)(ti(n-l))

i=1,2, ... NT(n-1) - we must solve Equation (3.58) by interpolation

among these calculated values. We use a Lagrange four-point inter-

polation scheme as a subroutine for the numerical solution of

Equation (3.58).

With t (n) computed, we choose a value for the number

of rough-mesh intervals in t on the upper profile. It is con-

venient to make this number equal to its counterpart in the case

of the w-mesh, viz., NR+ Note that this particular number charac-

terizing the t-mesh is then independent of n. We can now write

) () = (3.59)
NK NR

where (At)R(n) is the width of the rough-mesh interval correspond-

ing to the nth iteration.

Before calculating t (n), we introduce a quantity

(nt This is defined as the value of t satisfyingFR

sOn')(t) = SFR (3.59a)

The remarks pertaining to Equation (3.58) apply to this

equation as well. In particular, the solution is effected via

the same Lagrange interpolation process.

Note that in general t(n)* is not one of the mesh
tFR

points in t.
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We now pick the mesh point tFR(n) as follows: starting

at the point tk(=l), we lay off in the direction of decreasing

t a rough mesh of width (At)(n), where (At)(n) is given by Equa-

tion (3.59). From the mesh points thus generated, we choose as

t Fn the one lying closest to t n*(If tFRn) is to within

the number of significant figures retained - precisely midway

between two mesh points, then the mesh point with the less post-
tive t- value is taken to be t ) If N(nd

FR R

of rough-mesh intervals on the lower profile in the nth itera-

tion, it can be shown that the analytic representation of the

procedure just described is given by the equation

t(n) _ t(n)* 1 .NT FR+n FR N)(n)- + r (3.60)
(A)R(n) - ,)n R
(LAt)(nR

0<r<l

where the first equality follows from the fact that t(n) = 1.NT
The second equation states that N(n)- is the integer part of theR
expression on the left. This determination of N(n)- leads at

R

once to the desired expression for t(n) (cf. Equation (3.38)

for wFR):

t,)--t t(n) NR(n)(t)(n)R
FR NT - RR

(3.61)
1 1- N (n)"- (Lt) (n)

R R
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Next, we choose the number of fine-mesh intervals in

t to equal NF, the number of such intervals in w. As in the case

of N +, this number is independent of n. From the meaning of t(n)
RI RF

and t(n) together with their calculated values as given by Equa-

tions (3.58) and (3.61), we can then write for (At)(n), the widthFI

of the fine-mesh interval

()_t(n) _ t(n)
,t) ( = FR RJ (3.62)

F NF

The foregoing equations now enable us to use the fol-

lowing expressions for the calculation of the quantities tn).

We recall that tl(n) = -1.

tfn) = -1 + (i - l)(At(n) i = 192, ... N + (3.63)

t (n)= t()+ (i - N+ -_ (,t)(n)

-1 + N+ (a)(n) + (i - N- 1)(,tn) (364)NR RR R NF

i = ++ 1 ......1+ + N

tfn) = t(n) + (i - NR - NF - l)(t)(n)

= -1 +N +( 0) n) + NF(nt)F
(3.65)

÷(i - N+ - NF - 1)(6t)(

RNF + 1R.... (n)

N+ NR(n)(
where N n) N +1 + NF + N n-+ 1.
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With the mesh points t~n) established, we can discussi

the computation of the nth order quantities s(n)(tin)) and ton)

via the iteration Equations (3.5) - (3.8). The principal task

is to perform numerically the integrations occurring in those

equations. This is a complex operation having a number of aspects

which we now discuss.

1. Consider first the integral over t', the "outer inte-
gral" of Equation (3.5). Since the function N(n)(t) - and there-

fore s(n)(t), see Equation (3.7) - is to be evaluated at the

points t~n) given by Equations (3.63) - (3.65), it follows that

the upper limit, t, of the outer integral is to be assigned the

values tin) only. Now it turns out that the integrand - call it
I(n)(t')- of the outer integral is a smooth function* of t', and

therefore we save a great deal of machine time without much loss

of accuracy by evaluating I(n)(t,) only at the points t' = t(n)
£

The integrals

t (n)

N (n)(tn)) f I(n)(t')dt' i - 1,2, ... T (3.66)
-1

are then computed by a recursion scheme almost identical to that

defined by Equation (3.44). The only difference is that in the

* This may not be true in the vrnithborhood of 0'-O for the 10-to-1
parabola at zero angle-of-attack. See the discussion of Case I
in Section 4.
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present case the integrand I(n)(t,) is given in tabular form

rather than analytically; thus the values of I (• ) required

by the Simpson's rule subroujtine* must be obtained by interpo-

lation among the quantities I(n) (tfn)). For this purpose, as

with all our interpolations, the Lagrange four-point procedure

is used.

2. We can write I(n)(t') as

I(n)(tj) = ex . (n)(t') g(tjt(n -3.67)

where J(n)(t') represents the "inner integral"

(n- 1) 1

The factor gt,(t',to ( )) in E•uation (3.67) is a

simple algebraic function of t' and t(n-l) as can be seen from
0

Equations (2.1) and (3.1); its evaluation at t' - t••) therefore

* This subroutine has already been alluded to in the discussion
following Equation (3.44). The successive refinement of the
Simpson mesh should stop once thl density of the bimpson pointb
exceeds that of the points ti(" ). Further refinement pro-
duces no improvement in the approximation to the integral
since the additional integrand values are being obtained by
interpolation anyway.
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presents no difficulty. On the other hand, because the function

1(s(n-1) (T)) ordinarily varies very rapidly when the value of

s (n-1)(_) corresponds to the vicinity of the nose, a special

technique haL to be used to carry out the -- integration in Equa-

tion (3.68). In this proczdure - a so- ailed adaptive integra-

tion subroutine - Simpson's rule is applied separately to vari-

ous subintervals of the integration interval -1 , T < 1. The

Simpson mesh-width is made smallest in that subinterval where

the integrand is varying most rapidly, etc. The details of this

subroutine can be found in [4].

3. The application of the adaptive integration technique

requires that certain additional interpolations be performed.

The integrand function T(s (n-1) (T)) is known only at the points

S (n" )corresponding to the values s(n-l)(t 1n-l)) outputtedi ti

from the (n-1) st iteration, To evaluate TO (n-1) (T)) at one

of the Simpson points, ue proceed as follows: denoting by Tj,n

any one of the Simpson points in T, we first compute s(n-l)(Tjn)

by interpolation among the known quantities s

(n-1)
Denoting the resulting value of s by j we find a corre-

sponding value of w through the equation

s(w) = s~n-l) (3.69)

where it will be recalled that the function s(w) depends only on

the geotxty of the body.

Equation (3.69) is solved - call the solution w(n) -

by interpolation among the quantities wi, i = 1,2, ..... We then
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compute the "unction 5(w) at Wn-) by direct evaluation of the

formulas given in Equations (3.27) - (3.29). The resultant numl-

ber, p(wn I)), is the desired value of the integrand function,
(s(n-) (T )), at the Simpson point

Note that by this round-about procedure we have r'voided

interpolation on a rapidly varyi-g function, viz., P(w). (1(w)

changes rapidly in the vicinity of the nose, w 0.]

4. Although the integrand of the inner integral (see Equa-

tion (3.68)) is a continuous function of T in the interv.al

-1 < T < 1, the integrand becomes indeterminate when T - t'.

Evaluation by l'Hospital's zule proves inconvenient because

the necessary derivatives with respect to r cannot be cimputed

with sufficient accuracy. This effect is parti-cularly marked

when t' = +1, for which case it can be seen that A'he second

derivative of the numerator is required. Accoruingly, we eval-

uate the integrand at r = t' by assigning to it the value at a

neighboring point. The neighboring point is chosen close enough

for the integrand to differ very little from its value at T = t'

but not so close that the indeterminacy spoils the accuracy of

the evaluation. Experimentally it has been found that a separa-

tion of about 0.003 between t' and the r-value of the neighboring

point works quite uell. The integrand at the neighboring point

is computed by interpolation among the points ti .

5. The integral on the right of Equation (3.8) has the

same form as the inner integral j(n)(t') (Equation (3.68)) except

for the replacement of t', which is real, by the complex quantity
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t(n-i). This removes the aforementioned indeterminacy; otherwise

the same considerations apply to the computation of this integral

as in the case of J(n)(t,).

We conclude this subsection by remarking that the itera-

tion process is terminated in one of two ways. Either a maximum

number of iterations is chosen in advance, or else the process

stops when a certain convergence criterion is satisfied. The

criterion is that

f•t (n - t6_-1 (t (n) _t (n -1) (n

M e 0 N() (1) - N(n-l) (1)1.Mt(n) 'N(n)(i) 
f

< 6 (3.70)

where the number 5 is generally taken to be 10- 4 . We recall

that N(n)(i) is the value at t = I of the function defined in

Equation (3.5).

Inputs to Part C

- i

n = 1,2, .. (N40) N= + NF + b + 1)

Outputs from Part C

tfn), (n) (tn)), -((n)(tfn))), = 1,2, ... N- n)

to (n) A(n) ) , n 1- ...Aon , n- ... m,
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D. Computation of Pressure, Force, and Moment Coefficients

_1' Cn), ~n) ,and ( ar
The coeffi'.ients C~n)[rt, d n and Cm) are

computed after each iteration via Equations (3.9) - (3.13).

We can effect a convenient simplification of the right side

of Equation (3.9) by differentiating Equation (3.5) with respect

to t and invoking Equations (3.1) and (3.7). The result is that

f (t~t(n)) r " t 2  , i
t t exp - (t) (3.71)

S., t I. Ts (t) L

where 3 (n) (t) is the inner integral, Equation (3.68).

It follows that

c~n)[t] = I t 2 expL[-(I- t2)j(n)(t)] (3.72)

and since J(n)(t) is computed at the points t(n) in the manner

already discussed, Equation (3.72) immediately furnishes the,

quantities C(n)[t (n)), , = 1,2, ... N .n) The numerical speci-

fication of the function C(n) (s) - the normalized pressure as a
p

function of arc length - then results from associating the s-values,

s (n)(trn)), with the corresponding C(rn)([tn)], in accordance with

the identity

Cp~n)(s(n)(t (n)) = c(n)jt~n), (3.7 3)

The integrands in the integrals of Equations (3.11) -
(3.13) are evidently defined numerically at the points tn We

perform the integrations by combining, as previously discussed,
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successive applications of Simpson's rule with interpolations

among the integrand values. It should be noted that the con-

tents of the curly brackets in the integrands are, for evalua-

tion purposes, replaced by the right side of Equation (3.72),

while s(n)(t) itself is evaluated by solving for it in Equa-

tion (3.71). Finally, the functions x(s(n)(t)) and y(s(n)(t))

appearing in Equation (3.13) are computed by interpolations

among the tables of x(wi), y(wi), and s(wi) that form part of

the output of Part A.

Inputs to Part D

,,tn) ,s(n)(tin), i = 1,2, ... N(n) t(n)
•t IT o

n = 12, ....

Outputs from Part D

P T 1cd e .m

n = 1,2,
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4. NUMERICAL RESULTS

In the Introduction, we summarized the results obtained

by applying the foregoing computational scheme to four cavitated

flows. We now present some of the numerical details. All compu-

tations were performed on the IBM 7094 computer.

Case 1. 10-to-i parabola, zero angle of attack, zero cavita-

tion number.

Inputs: a =0, a = 0, xA = xB = ix =x = 0.015,

NR 30, NF = 100, y(W)= 7u 1 VT-
Maxiuuim number of iterations = 4. Basic flow=flow about wedge.

At the present time, this case is the only one for which

there seems to be no possibility of imputing any physical signifi-

cance to the sequence of computed pressure distributions. As may

be seen by referring to Figure 4.1, the distribution corresponding

to the first iteration is, to a high degree of accuracy, symmetric

with respect to the nose . This is as it should be since both the

basic flow and the true pressure distribution are symmetric. On

the other hand, the second and third distributions increasingly

show a loss of symmetry, while the fourth distribution bears no

resemblance to the first three and in fact is almost antisymmetric

with respect to the nose. The corresponding drag coefficients,

shown in Table 4.1, vary from one iteration to the next in what

seems to be a random manner. (The lift and moment coefficients

vanish when the angle-of-attack is zero.)

*The nose in this case is located at s=l.003 since the total normal-

ized arc length for a 10-to-l parabola equals 2.006. Note that the
interval of s-values in Figure 4.1 corresponds to the vicinity of
the nose, where the very rapid variations in pressure take place.
Outside this interval Cp goes monotonically to zero in all four
iterations, as s - 0 or 2.006.
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TABLE 4.1

(n)
Iteration number, n Cd

1 0.00421

2 0.00483
3 0.00301
4 0.00409

A possible explanation of these results is being sought

in the fact that for a 10-to-i parabola, the integrand of the inner

integral varies extremely rapidly with T in the neighborhood of the

nose, T=0, owing to the behav.or of I(s((T)) in that neighborhood.

The behavior is such that the major 'inge in P takes place over a

f-interval of width smaller than that o. the fine mesh interval.

This abrupt variation could have two consequences: first, it might

induce errors in the evaluation of the inner integral; second, it

can be shown that the exact value of the inner integral, regarded

as a function of t', peaks sharply when t' is in the region where

0 varies rapidly. Such peaking could then lead to inaccuracies in

the computation of the outer integral, owing to the interpolation

used to evaluate the outer integrand, I(n)(t').

Ir must be emphasized that these considerations are hypo-

thetical. The effectiveness of our computational scheme when ap-

plied to thin bodies having rounded noses of very high curvature

is subject to further investigation.

Case 2. l-to-i parabola, zero angle-of-attack, zero cavita-

tion number.

Inputs: a = 0 = 3, XA - XB = , RF XFR = 0.04,+ +½ 1
NR= 15, NF = 40, (x) W +

Maximum number of iterations = 7. Basic flow -flow about wedge.
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Results for this case are presented in Figures 4.2 and

4.3, and Table 4.2. Figure 4.2 shows the computed pressure coef-

ficient C as a function of arc length along the parabola for each

of the seven iterations. Since the flow is symmetric about the

nose, and the iterates reflect this fact, it suffices to give the

pressure distribution over half the perimeter. Note that arc

length in this case is measured from the nose rather than from the

upper detachment point. The convergence of the iteration process

is suggested by the fact that the sixth and seventh pressure dis-

tributions differ by at most a few percent (on the graph they are

not even distinguishable).

In Figure 4.3 we show a comparison between our final

(seventh) distribution and the distribution computed from an ap-

[3)proximate formula derived by Johnson . Johnson's formula is

meant to apply to parabolas with a higher fineness ratio than one-

to-one, but the agreement is still quite close. For the abscissa

in Figure (4.3) we have chosen y rather than s because the area

under the resultant curve can be shown to equal half the drag co-

efficient cd; this expedites the comparison between our drag coef-

ficient and Johnson's, which turn out to eqaal 0.307 and 0.289 re-

spectively, a difference of less than 6 percent.

Table 4.2 shows how the computed value of cd(n) varies

with the iteration number, n. The sixth and seventh values differ

by less than 0.2 pereent.
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TAbBLE 4.2

IterationNo. Cd

1 0.44199

2 0.31008

3 0.30353

4 0.30950
5 0.30597

6 0.30734

7 0.30673

Case 3. 1-to-1 parabola, I' angle-of-attack, zero cavitation

number.

Inputs: a= 1, a = 0, xA = XB = 1, x = 0.25, XFR 0.10,
+ + = ½

NR 15, NF = 120, y-(x) = +

Maximum number of iterations = 14. Basic flow = flow corresponding

to zero angle of attack on same parabola.

This case is distinguished by the fact that for the func-

tion s(o)(t) with which the iterations are started, we choose the

final iterate, s(7),t), obtained in the zero angle-of-attack case.

Figure 4.4 shows the resulting pressure distributions corresponding

to various iteration numbers as a function of arc length measured

from the upper detachment point. Note that in the case of a 1-to-

1 parabola, S = 2.323. For the sake of clarity, only the first,

sixth, thirteenth, and fourteenth distributions are shown. The

still considerable separation between the thirteenth and four-

teenth distributions indicates that the rate of convergence is

much slower than in the zero angle-of-attack case. It can be seen-

the curves not shown bear this out - that the pressure distributions
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shift back and forth as the iteration number changes. A manifes-

tation of this effect is exhibited in Figure 4.5 where we have

plotted the s-value of the stagnation point (maximum pressure) as

a function of iteration number. The oscillatory behavior is quite

apparent, as is the gradual approach to a limiting position.
(n) (n)

Table 4.3 gives the computed values of cd , c• j

and ca(n) as a function n.

TABLE 4.3

(n) (n) c(n)

Iteration No., n Cd (n)_c_ I_(n) cm

1 0.30727 -0.00682 -0.00042

2 0.30516 0.03830 0.01172

3 0.30298 0.19697 0.10083

4 0.30795 -0.01678 0.00214

5 0.30488 0.05413 0.02038

6 0.30513 0.15519 0.08022

7 0.30739 0.01061 0.01005

8 0.30577 0.06780 0.02979

9 0.30573 0.12334 0.06427

10 0.30786 0,02816 0.01722

11 0.30571 0.07346 0.03430

12 0.30965 0.10423 0.05441

13 0.30724 0.04170 0.02297

14 0.30585 0.07581 0.03649

The drag coefficient remains substantially constant,

apart from a small random fluctuation - rms relative amplitude

about 1 percent - apparently due to numerical errors. The
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average value of c d (n) is about the same as the final value in the

zero-degree case. The more severe fluctuations in c e (n) and cm(n)

can be explained by referring to Equations (2.5a)-(2.6b). From

those equations we see first that when a is small, Cd" cx and

cI Cy. Thus the computability of cd and ct depends on the com-

putability of the integrals in Equations (2.6a) and (2.6b) respec-

tively. Observing that as the integration variable s runs from 0

to S, the angle •(s) goes from slightly greater than r to slightly

less than 2r, we see that sinp(s) remains negative over the inter-

val 0 < s e S. Since Cp(s) is positive on that interval*, the

integrand in Equation (2.6a) is negative throughout; thus there is

no cancellation of one part of that integral by the other. On the
3w

other hand, the function cosT(s) is antisymmetric about 3 =

(s while Cp (s) is almost symmotric about the same point.

It follows that the integral in Equation (2.6b) is the difference

between two almost equal quantities, and its computation is there-

fore highly susceptible to numerical error. This explains why the

fluctuations in c ) are more severe than in cd(n) The same
flctappiens to Cm n

argument applies to ca(n) upon remarking that the terms x(s)cosa(s)

and y(s)sin•(s) in the integrand of Equation (2.5c) are both anti-
symmetric about s = 1S.

It should be noted, however, that despite the foregoing

effect, some tendency toward convergence may be discerned in the

tabulated values of c and cm(n). In fact, the numbers seem to

indicate that as a rough guess, the limiting value of c4 lies

1For a few values of n, C p(n)(s) goes slightly negative over a short

interval in s, but this does not affect the argument.
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somewhere between 0.03 and 0.08, while for cm it lies between 0.03

and 0.06. The need for greater accuracy in computing these inte-

grals is evident.

Case 4. L-to-I parabola, 5' angle-of-attack, zero cavitation

number.

Inputs'. a= 5*, a = 0, x A = xB = , XR = 0.25, XFR = 0.10,

N= 15, N = 120, y•(x) -4.

Maximum number of iterations = 14. Basic flow = flow about wedge.

In Figure (4.6) we have plotted the computed pressure

distributions corresponding to the first, fourth, ninth, thirteenth,

and fourteenth* iterations, the remaining distributions having been

omitted for the sake of clarity, as in the 1i case. By ccntrast

with that case, however, there seems to be no trend toward a limit-

ing distribution, and our present opinion is that the sequence of

pressure distributions is not convergent. On the other hand, we

do not feel that these distributions are meaningless since with the

exception of the third distribution (not shown), which has a large

negative dip, they are all of the expected form (judging from the

00 and 1' cases), while the computed pressures fall within the ex-

pected range. We conclude that the failure to converge is probably

the result of fluctuations arising from numerical inaccuracies. As

mentioned in the Introduction, this idea is supported by the com-

parative constancy - rms fluctuation over fourteen iterations

about 5 percent-of the drag coefficient as a function of iteration

number, n, and by the quite reasonable figure of 0.299 for the

*These were chosen as representative of all fourteen distributions
in the range of pressures encompassed.



100

tOOI 7 1 - - -

.80

.60

.20

-. 20 -,.

-40

-.r40 f,,

-40

S.00 .10 .20 .3,0 .40 .50 so .



__ _ _ _ _ --. x- -
4th ITERAT:ON-f..

Ist ITERATION o/ "

S" 14th ITERATION

-_ _ _ _ _ / _ __ _ _ _ _

9th ITERATION

NORMALIZED PRES

I-TO-I PARABOLA
FIGURE

LI
11 1.

ALRC-lll El "T" ll OIITLL.LL L K Sil jA
'.60 .90 k00 !.10 120 1,30 i140 '.,') 1.60

$, A.RC IINGTN FROM OIETACHME•NT POINT A



42A

..............................

II

............

PRESSURE DISTRIBUTION,
iBOLA, 50 ANGLE-OF-ATTACK
IGURE - 4.6

S1.70 1.80 1.90 2.00 2.10 220 2.30 2.40 2.50

3



43.

average over the iterations. The tabulation oZ these values and

the corresponding values of the lift and moment coefficients is

exhibited in Table 4.4.

TABLE 4.4
cd(r) c(n) c(n)

Iteration No., n d n

1 0.30568 -0.02721 -0.00028

2 C.28080 0.14818 0.05413

3 0.22256 1.04143 0.50903

4 0.32191 0.17081 0.10733

5 u."9101 0.36652 0.17795

S 0. 2ý0q,4 0.34706 0.17524

1 0.29248 0.50943 0.25906

8 C.30700 0.22710 0.11964

9 0.28604 0.45990 0.22614

10 0.31108 0.29812 0.16118

1L 0.29963 0.27486 0.13723

1? 0.28485 0.42457 0.20862

12 0.30755 0.39021 0.20712

14 0.30790 0.19595 0.10319
Note the much larger values of cn and Cm(n) n

the case of the 50 angle-of-attack as compared with the 10 case.

This was to be expected and further substantiates our opinion that

the 5' pressure distributions have some physical significance.
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5. SUPPLEMENTARY DISCUSSION AND RECOMMUTNA'IONS

As evidenced in this report, our experience with the

computation of pressure distributions by ipplication of Wu's

theory of cavitated flow suggests several steps that might be

taken to improve our technique.

1) Since, in our opinion, the numerical inaccuracies in

the various integrals are probably the principle cause of those

anomalous results already described, a major effort should be

made to improve the accuracy of the inrtegration process. The

most direct way of doing this is simply to increase the number

of data points, especially in the fine mesh region. The only

limitation on the improvement in accuracy thus attainable is the

possibility of excessive computation time. Howevet, 0- cases

already run have used less than 0.01 .oi~s pal itex -. un on the

!BM 7094, so that we seem to have considerable leewuay in this

respect.

2) It is possible that in the 5' case there is an addi-

tional factor tending to prevent conververice. Specifically, the

basic flow, which in t:aL cas. was the flow about the wedge at

00 angle-of-attack, may be too far removed from the actual flow.

This suggests that one might proceed stepwise by using the 0*

solution for the parabola as the basic flow in the 1V case, the

10 solution as the basic flow in the 2* case, etc., thereby

"creeping up" on the sizuation of a 50 (or higher) angle-oc.-

attack. Naturally the increments in the angle-of-attack could be

made smaller if this was thought desirable.
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3. An increase in the rate of convergence of the iteration

process might be effected through some technique for processing the

it-erates in a manner more sophisticated than successive substitution

into the integral of the integral equation. For example, a simple

and familiar technique of this kind consists of substituting into

the integral not the last iterate, but the average of the last two.

Apparently this has been found to work quite well in some cases.

Variations of this idea, as well as more elaborate procedures, could

also be tried.
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